19,430 research outputs found

    The UV behavior of Gravity at Large N

    Full text link
    A first step in the analysis of the renormalizability of gravity at Large N is carried on. Suitable resummations of planar diagrams give rise to a theory in which there is only a finite number of primitive superficially divergent Feynman diagrams. The mechanism is similar to the the one which makes renormalizable the 3D Gross-Neveu model at large N. Some potential problems in fulfilling the Slavnov-Taylor and the Zinn-Justin equations are also pointed out.Comment: 17 pages, 9 figures. To appear on Phys. Rev. D. Two more references, further technical details and the discussion of the KLT relations at large N have been include

    Comparison of liquid-metal magnetohydrodynamic power conversion cycles

    Get PDF
    Comparison of liquid metal magnetohydrodynamic power conversion cycle

    Convergence of density-matrix expansions for nuclear interactions

    Full text link
    We extend density-matrix expansions in nuclei to higher orders in derivatives of densities and test their convergence properties. The expansions allow for converting the interaction energies characteristic to finite- and short-range nuclear effective forces into quasi-local density functionals. We also propose a new type of expansion that has excellent convergence properties when benchmarked against the binding energies obtained for the Gogny interaction.Comment: 4 pages, 3 figure

    Hadron Structure in the Non-Perturbative Regime of QCD: Isospin Symmetry and its Violation

    Get PDF
    I discuss recent progress made in calculating electromagnetic corrections in the framework of the effective field theory of QCD. In the case of elastic pion-pion scattering, strong interaction predictions have been worked out to two loop accuracy. I present first results for the electromagnetic corrections in the case of neutral pions. Here, the only sizeable effect comes from the charged to neutral pion mass difference. In the presence of nucleons, isospin violation can be measured in threshold pion photoproduction. I review the present status of the theoretical predictions and the experimental data. I argue that a deeper understanding of isospin violation based on a more precise study of such reactions can be achieved.Comment: 10 pp, LaTeX file, 3 figures, uses espcrc1.sty and epsf, plenary talk, QULEN '97, Osaka, May 1997, to be published in the proceeding

    Development of improved amorphous materials for laser systems

    Get PDF
    Crystallization calculations were performed in order to determine the possibility of forming a particular type of laser glass with the avoidance of devitrification in an outer space laboratory. It was demonstrated that under the homogenuous nucleating conditions obtainable in a zero gravity laboratory this laser glass may be easily quenched to a virtually crystal-free product. Experimental evidence is provided that use of this material as a host in a neodymium glass laser would result in more than a 10 percent increase in efficiency when compared to laser glass rods of a similar composition currently commercially available. Differential thermal analysis, thermal gradient oven, X-ray diffraction, and liquidus determination experiments were carried out to determine the basics of the crystallization behavior of the glass, and small-angle X-ray scattering and splat-cooling experiments were performed in order to provide additional evidence for the feasibility of producing this laser glass material, crystal free, in an outer space environment

    Cosmological Density Perturbations with a Scale-Dependent Newton's G

    Full text link
    We explore possible cosmological consequences of a running Newton's constant G(□) G ( \Box ) , as suggested by the non-trivial ultraviolet fixed point scenario in the quantum field-theoretic treatment of Einstein gravity with a cosmological constant term. In particular we focus here on what possible effects the scale-dependent coupling might have on large scale cosmological density perturbations. Starting from a set of manifestly covariant effective field equations derived earlier, we systematically develop the linear theory of density perturbations for a non-relativistic, pressure-less fluid. The result is a modified equation for the matter density contrast, which can be solved and thus provides an estimate for the growth index parameter γ\gamma in the presence of a running GG. We complete our analysis by comparing the fully relativistic treatment with the corresponding results for the non-relativistic (Newtonian) case, the latter also with a weakly scale dependent GG.Comment: 54 pages, 4 figure

    Aspects of Nucleon Chiral Perturbation Theory

    Get PDF
    I review recent progress made in the calculation of nucleon properties in the framework of heavy baryon CHPT. Topics include: Compton scattering, πN\pi N scattering, the anatomy of a low-energy constant and the induced pseudoscalar form factor.Comment: plain TeX (macro included), 12pp, lecture delivered at the workshop on "Chiral Dynamics: Theory and Experiments", MIT, July 25-29, 199

    Effective Nonlocal Euclidean Gravity

    Full text link
    A nonlocal form of the effective gravitational action could cure the unboundedness of euclidean gravity with Einstein action. On sub-horizon length scales the modified gravitational field equations seem compatible with all present tests of general relativity and post-Newtonian gravity. They induce a difference in the effective Newton's constant between regions of space with vanishing or nonvanishing curvature scalar (or Ricci tensor). In cosmology they may lead to a value Ω<1\Omega<1 for the critical density after inflation. The simplest model considered here appears to be in conflict with nucleosynthesis, but generalizations consistent with all cosmological observations seem conceivable.Comment: 12 pages, LaTe

    Growth of covariant perturbations in the contracting phase of a bouncing universe

    Full text link
    In this paper we examine the validity of the linear perturbation theory near a bounce in the covariant analysis. Some linearity parameters are defined to set up conditions for a linear theory. Linear evolution of density perturbation and gravitational waves have been computed previously. We have calculated the vector and scalar induced parts of the shear tensor. For radiationlike and dustlike single fluid dominated collapsing Friedmann-Lemaitre-Robertson-Walker background it is shown that the linearity conditions are not satisfied near a bounce.Comment: 9 pages, final versio

    Higgs-Flavor Groups, Naturalness, and Dark Matter

    Full text link
    In the absence of low-energy supersymmetry, a multiplicity of weak-scale Higgs doublets would require additional fine-tunings unless they formed an irreducible multiplet of a non-abelian symmetry. Remnants of such symmetry typically render some Higgs fields stable, giving several dark matter particles of various masses. The non-abelian symmetry also typically gives simple, testable mass relations.Comment: Some comments added after Eqs. (2) and (12
    • …
    corecore